Trigonometric Identities

There are several identities (formulas) involving trigonometric functions that are true for every angle.

Some are crazy complicated (and that's what precalc is for), but there are a few which are very simple and can be used to simplify complicated expressions and equations.

Reciprocal Identities

$$\frac{1}{\sin\theta} = \csc\theta$$

$$\frac{1}{csc\theta} = sin\theta$$

$$\frac{1}{\cos\theta} = \sec\theta$$

$$\frac{1}{sec\theta} = cos\theta$$

$$\frac{1}{\tan\theta} = \cot\theta$$

$$\frac{1}{\cot\theta}=\tan\theta$$

Proof:

$$\frac{\sin\theta}{\cos\theta} = \frac{\frac{opp}{hyp}}{\frac{adj}{hyp}} = \frac{opp}{hyp} \times \frac{hyp}{adj} = \frac{opp}{adj} = \tan\theta$$

Quotient Identities:

$$tan\theta = \frac{sin\theta}{cos\theta}$$

$$\cot\theta = \frac{\cos\theta}{\sin\theta}$$

$$\frac{\cos\theta}{\sin\theta} = \frac{\frac{adj}{hyp}}{\frac{opp}{hyp}} = \frac{adj}{hyp} \times \frac{hyp}{opp} = \frac{adj}{opp} = \cot\theta$$

Pythagorean Identities:

$$sin^2\theta + cos^2\theta = 1$$

$$tan^2\theta + 1 = sec^2\theta$$

$$1 + cot^2\theta = csc^2\theta$$

In the unit circle,

The Pythagorean Theorem yields the first Pythagorean identity.

Dividing each term by $\cos^2\theta$: $\frac{\sin^2\theta}{\cos^2\theta} + \frac{\cos^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$ and using the quotient identities yields the second one.

Dividing each term by $sin^2\theta$ yields the third one.

So how do we use these?

Proving identities and simplifying expressions.

Ex:
$$\frac{1-\cos^2\theta}{\sin^2\theta} = 1 \rightarrow \frac{\sin^2\theta}{\sin^2\theta} = 1$$

Because:
$$\frac{1-\cos^2\theta}{\sin^2\theta} = \frac{(\sin^2\theta + \cos^2\theta) - \cos^2\theta}{\sin^2\theta} = \frac{\sin^2\theta + \cos^2\theta - \cos^2\theta}{\sin^2\theta} = \frac{\sin^2\theta}{\sin^2\theta} = 1$$

Ex:
$$\cos\theta + \sin\theta \cdot \tan\theta = \cos\theta + \sin\theta \cdot \frac{\sin\theta}{\cos\theta} = \cos\theta + \frac{\sin^2\theta}{\cos\theta}$$

Multiply the first term by 1 (in the form of $\frac{cos\theta}{cos\theta}$) to get a common denominator.

$$\frac{\cos\theta}{\cos\theta} \cdot \frac{\cos\theta}{1} + \frac{\sin^2\theta}{\cos\theta} = \frac{\cos^2\theta}{\cos\theta} + \frac{\sin^2\theta}{\cos\theta} = \frac{(\cos^2\theta + \sin^2\theta)}{\cos\theta} = \frac{1}{\cos\theta} = \sec\theta$$